First metabolic profile of XLR-11, a novel synthetic cannabinoid, obtained by using human hepatocytes and high-resolution mass spectrometry.
نویسندگان
چکیده
BACKGROUND Since the mid-2000s synthetic cannabinoids have been abused as recreational drugs, prompting scheduling of these substances in many countries. To circumvent legislation, manufacturers constantly market new compounds; [1-(5-fluoropentyl)indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11), the fluorinated UR-144 analog, is one of the most recent and widely abused drugs, and its use is now linked with acute kidney injury. Our goal was to investigate XLR-11 metabolism for identification of major urinary targets in analytical methods and to clarify the origin of metabolites when one or more parent synthetic cannabinoids can be the source. METHODS We incubated 10 μmol/L XLR-11 with pooled human hepatocytes and sampled after 1 and 3 h. Samples were analyzed by high-resolution mass spectrometry with a TOF scan followed by information-dependent acquisition triggered product ion scans with dynamic background subtraction and mass defect filters. Scans were thoroughly data mined with different data processing algorithms (Metabolite Pilot 1.5). RESULTS XLR-11 underwent phase I and II metabolism, producing more than 25 metabolites resulting from hydroxylation, carboxylation, hemiketal and hemiacetal formation, internal dehydration, and further glucuronidation of some oxidative metabolites. No sulfate or glutathione conjugation was observed. XLR-11 also was defluorinated, forming UR-144 metabolites. On the basis of mass spectrometry peak areas, we determined that the major metabolites were 2'-carboxy-XLR-11, UR-144 pentanoic acid, 5-hydroxy-UR-144, hydroxy-XLR-11 glucuronides, and 2'-carboxy-UR-144 pentanoic acid. Minor metabolites were combinations of the biotransformations mentioned above, often glucuronidated. CONCLUSIONS These are the first data defining major urinary targets of XLR-11 metabolism that could document XLR-11 intake in forensic and clinical investigations.
منابع مشابه
Driving under the influence of synthetic cannabinoid receptor agonist XLR-11.
The case of a 22-year-old male Caucasian driver is presented. He was involved in a traffic collision. At the roadside, he displayed blank stare and mellow speech with a barely audible voice. A DRE found low body temperature, rigid muscle tone, normal pulse, lack of horizontal and vertical gaze nystagmus, nonconvergence of the eyes, dilated pupil size, and normal Pupillary reaction to light. A s...
متن کاملAcute kidney injury associated with smoking synthetic cannabinoid.
CONTEXT AND OBJECTIVES Synthetic cannabinoids are illegal drugs of abuse known to cause adverse neurologic and sympathomimetic effects. They are an emerging health risk: 11% of high school seniors reported smoking them during the previous 12 months. We describe the epidemiology of a toxicologic syndrome of acute kidney injury associated with synthetic cannabinoids, review the toxicologic and pu...
متن کاملIn Vitro Metabolite Profiling of ADB-FUBINACA, A New Synthetic Cannabinoid
Metabolite profiling of novel psychoactive substances (NPS) is critical for documenting drug consumption. N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (ADB-FUBINACA) is an emerging synthetic cannabinoid whose toxicological and metabolic data are currently unavailable. We aimed to determine optimal markers for identifying ADB-FUBINACA intake. Metabolic st...
متن کاملVaping Synthetic Cannabinoids: A Novel Preclinical Model of E-Cigarette Use in Mice
Smoking is the most common route of administration for cannabis; however, vaping cannabis extracts and synthetic cannabinoids ("fake marijuana") in electronic cigarette devices has become increasingly popular. Yet, most animal models used to investigate biological mechanisms underlying cannabis use employ injection as the route of administration. This study evaluated a novel e-cigarette device ...
متن کاملScoparone affects lipid metabolism in primary hepatocytes using lipidomics
Lipidomics, which focuses on the global study of molecular lipids in biological systems, could provide valuable insights about disease mechanisms. In this study, we present a nontargeted lipidomics strategy to determine cellular lipid alterations after scoparone exposure in primary hepatocytes. Lipid metabolic profiles were analyzed by high-performance liquid chromatography coupled with time-of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical chemistry
دوره 59 11 شماره
صفحات -
تاریخ انتشار 2013